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Exact results for hydrogen recombination on dust grain surfaces
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Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

~Received 28 May 2002; published 6 November 2002!

The recombination of hydrogen in the interstellar medium, taking place on surfaces of microscopic dust
grains, is an essential process in the evolution of chemical complexity in interstellar clouds. Molecular hydro-
gen plays an important role in absorbing the heat that emerges during gravitational collapse, thus enabling the
formation of structure in the universe. The H2 formation process has been studied theoretically, and in recent
years also by laboratory experiments. The experimental results were analyzed using a rate equation model. The
parameters of the surface that are relevant to H2 formation were obtained and used in order to calculate the
recombination rate under interstellar conditions. However, it turned out that, due to the microscopic size of the
dust grains and the low density of H atoms, the rate equations may not always apply. A master equation
approach that provides a good description of the H2 formation process was proposed. It takes into account both
the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. In this paper we
present a comprehensive analysis of the H2 formation process, under steady state conditions, using an exact
solution of the master equation. This solution provides an exact result for the hydrogen recombination rate and
its dependence on the flux, the surface temperature, and the grain size. The results are compared with those
obtained from the rate equations. The relevant length scales in the problem are identified and the parameter
space is divided into two domains. One domain, characterized by first order kinetics, exhibits high efficiency
of H2 formation. In the other domain, characterized by second order kinetics, the efficiency of H2 formation is
low. In each of these domains we identify the range of parameters in which, due to the small size of the grains,
the rate equations do not account correctly for the recombination rate and the master equation is needed.

DOI: 10.1103/PhysRevE.66.056103 PACS number~s!: 05.10.2a, 82.65.1r, 98.58.2w
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I. INTRODUCTION

The recombination of hydrogen on the surfaces of mic
scopic dust grains in the interstellar medium has attrac
much interest in recent years. This process is essential s
gas-phase reactions cannot account for the abundance o2
in interstellar clouds@1–4#. Theoretical@5–12# and experi-
mental@13–18# techniques have been used in order to eva
ate the rate of H2 formation on relevant dust materials und
interstellar conditions. Quantum mechanical calculations
molecular dynamics simulations were performed, in attem
to identify the diffusion and reaction rates on the s
faces of various astrophysically relevant materi
@2–4,6,7,12,19,20#. Experimental results were also obtain
for the activation energies of the relevant diffusion and
sorption processes on various surfaces@13–15#.

Rate equations are an essential tool in the modeling
chemical reactions in the interstellar medium@21–32#.
Chemical models based on the rate equation approach
into account a large number of reactions in the gas phas
well as reactions that take place on the surfaces of d
grains. Rate equations were recently used in order to ana
the results of laboratory experiments on H2 formation on
dust-analog surfaces@33#. The analysis provided the surfac
parameters that are essential for the evaluation of the2
formation rate on dust grains in the interstellar medium. T
rate equations used in Ref.@33# describe the diffusion, reac
tion, and desorption processes on the surface. They pro
the time evolution of the average densities of atoms
molecules on the surface, while fluctuations are neglec
Such rate equations are expected to provide good result
macroscopic surfaces. However, it turns out that they may
1063-651X/2002/66~5!/056103~12!/$20.00 66 0561
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unsuitable for the study of hydrogen recombination in t
interstellar medium due to the small grain size and low fl
@34–38#. Under these conditions the number of H atoms
the surface of a grain may be very small and fluctuations
expected to be significant. Attempts to resolve this difficu
included the use of modified rate equations in which para
eters are changed to account for the finite grain size@34–38#.
Monte Carlo methods were also used, to simulate the sur
diffusion and reaction processes on small grains@39,40#. The
class of Monte Carlo methods that are suitable for such
tivated processes on the surface, away from thermal equ
rium, are the continuous time or kinetic Monte Carlo tec
niques@41#. In these simulations, at each time step, the n
move is picked with a probability proportional to its rat
The elapsed time is given, according to the theory of stoch
tic processes, by the inverse of the sum of the rates of
processes that could have occurred at that time. The kin
Monte Carlo approach can be directly related to the unde
ing master equation that describes the time evolution of
probabilities of all the microscopic states of the system@42#.
Monte Carlo simulations typically require large comput
tional resources. For example, the calculation of averages
quantities such as the H2 formation rate is done by collecting
large amounts of statistical information@39,40#. To study the
chemistry of interstellar clouds one needs a model t
couples the gas-phase and grain-surface reactions. It
found that the use of Monte Carlo methods in this contex
impractical, while rate equations for surface chemistry c
not account correctly for reaction rates on small grains.

Recently it was shown that the H2 formation process on
small grains can be described by a master equation appr
@43,44#. The master equation takes into account both the
©2002 The American Physical Society03-1
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O. BIHAM AND A. LIPSHTAT PHYSICAL REVIEW E 66, 056103 ~2002!
crete nature of the H atoms as well as the fluctuations.
dynamical variables are the probabilitiesP(n) that there are
n atoms on a grain at timet. The time derivativesṖ(n), n
50,1,2, . . . areexpressed in terms of the adsorption, rea
tion, and desorption terms. The master equation provides
time evolution of the probabilitiesP(n), from which the
recombination rate can be calculated. It was used in conju
tion with surface parameters obtained experimentally
computationally to explore the hydrogen recombination a
other chemical reactions on small grains under interste
conditions@43–45#.

In this paper we present a comprehensive analysis of
H2 formation process under steady state conditions as a f
tion of the physical parameters. These parameters include
flux of H atoms, the grain size, and surface temperatu
They also include properties of the surface, namely, the d
sity of adsorption sites as well as the activation energies
H diffusion and desorption. The analysis is based on an e
analytical solution of the master equation. In this solutio
the steady state distributionP(n) is expressed in terms o
two dimensionless quantities, composed of the physical
rameters mentioned above. Using this solution we iden
the relevant length scales in the problem. The param
space is then divided into two domains. One domain, ch
acterized by first order kinetics~namely, the H2 formation
rate is linearly proportional to the flux of H atoms!, exhibits
high efficiency of H2 formation. In the other domain, cha
acterized by second order kinetics~namely, the H2 formation
rate is proportional to the square of the incoming flux!, the
efficiency of H2 formation is low. In each of these domain
we identify the range of parameters in which, due to
small size of the grains, the rate equations do not apply
the master equation is needed.

The paper is organized as follows. The rate equat
model is described in Sec. II A and analyzed in Sec. II B. T
master equation is introduced in Sec. III A. The exact so
tion of the master equation is given in Sec. III B. The ana
sis of the H2 formation process on small grains that is bas
on this solution is presented in Sec. III C. The results
discussed in Sec. IV and summarized in Sec. V.

II. H 2 FORMATION ON MACROSCOPIC SURFACES

A. The rate equation model

Consider a flux of H atoms that are irradiated and stick
a macroscopic surface. The atoms perform hops as ran
walkers on the surface and recombine into H2 molecules
when they encounter one another. Letr(t) @in monolayers
~ML !# be the coverage of H atoms on the surface at timet. Its
time dependence is described by the following rate equat

dr

dt
5 f 2Wr22ar2. ~1!

The first term on the right hand side of Eq.~1! represents the
flux of H atoms. The parameterf represents theeffectiveflux
of atoms~in units of ML s21), namely, the~temperature de-
pendent! sticking coefficientj(T) is absorbed intof @the
Langmuir-Hinshelwood~LH! rejection process@46# of atoms
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deposited on top of already adsorbed atoms is neglected
since it is assumed that the coverage is low#. The second
term in Eq.~1! represents the desorption of H atoms from t
surface. The desorption coefficient is

W5n exp~2E1 /kBT!, ~2!

wheren is the attempt rate~usually taken to be 1012 s21), E1
is the activation energy barrier for desorption of a H atom,
andT is the temperature. The third term in Eq.~1! accounts
for the depletion of the H population on the surface due
recombination into H2 molecules, where

a5n exp~2E0 /kBT! ~3!

is the hopping rate of H atoms on the surface andE0 is the
activation energy barrier for hopping. Here we assume t
diffusion occurs only by thermal hopping, in agreement w
experimental results@33#. We also assume that there is n
energy barrier for recombination. The H2 production rater
(ML s21) is given by

r 5a r2. ~4!

For simplicity we assume here that all the H2 molecules are
desorbed from the surface upon formation. Even if on r
surfaces some of the molecules may remain on the sur
and desorb thermally later, under steady state conditions
low coverage, this will not affect the recombination rate.

A ~more complete! model, based on Eq.~1! was used@33#
to analyze the results of temperature programmed desorp
experiments@13–15#. The values ofE0 and E1 ~as well as
two additional parameters! that best fit the experimental re
sults were obtained. The steady state behavior under a
physically relevant conditions was then studied and the
combination efficiency

h5
r

f /2
~5!

was calculated in an astrophysically relevant range of fl
and temperature. Note that under steady state conditionsh is
limited to the range 0<h<1. It was found that the recom
bination efficiency is highly temperature dependent. It exh
its a narrow window of high efficiency along the temperatu
axis, which slowly shifts to higher temperatures as the flux
increased@33#.

B. Analysis and results

Consider a macroscopic surface exposed to a constant
of H atoms, as described by Eq.~1!. Under steady state con
ditions dr/dt50 and the coverage is given by

r5
1

4 S W

a D F211A118
~ f /W!

~W/a!
G . ~6!

The recombination efficiencyh52(a/ f )r2 takes the form

h5
1

8

~W/a!

~ f /W!
F211A118

~ f /W!

~W/a!
G2

. ~7!
3-2
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EXACT RESULTS FOR HYDROGEN RECOMBINATION ON . . . PHYSICAL REVIEW E 66, 056103 ~2002!
To obtain a better understanding of the recombination p
cess we will try to identify the length and time scales
volved. Consider the ratioa/W between the hopping rate an
the desorption rate. This ratio is~on average! the number of
hops a H atom makes before it desorbs~neglecting recombi-
nation!. It is also ~up to a constant multiplicative factor o
order unity and a logarithmic correction! the number of sites
that the atom visits before it desorbs@47#. We will denote
this number by

svisit5a/W. ~8!

Consider the ratioW/ f between the desorption rate and t
flux. Neglecting the recombination term we obtainW/ f
51/r, namely, this is approximately the average number
vacant sites around each H atom. We denote it by

svacant5W/ f . ~9!

The properties of the recombination process can thus be
ted on a two-dimensional parameter space, namely,f /W vs
W/a ~Fig. 1!. The coverager depends on these two param
eters, whileh depends only on the ratio

tanu5
~ f /W!

~W/a!
, 0<u<p/2. ~10!

The coverager and the recombination efficiencyh as a
function of u along the curve

f

W
5cS W

a D 21

, ~11!

wherec51/2, are shown in Figs. 2~a! and 2~b!, respectively.
The solid lines in Figs. 2~a! and 2~b! show the results with-
out LH rejection, while the dashed lines show the results
similar conditions but including LH rejection. In these fig
ures we identify a domain of high coverage and high e
ciency for f /W.W/a and a domain of low coverage and lo
efficiency for f /W,W/a, separated by the diagonal line
Fig. 1. We will now analyze the limits, deep in each of the
domains, in terms of the length scales associated withsvisit

FIG. 1. The phase diagram of hydrogen recombination on m
roscopic surfaces in the (W/a, f /W) plane, as described by Eq.~1!.
The parameter space is divided into two domains: the first o
domain, above the diagonal and the second order domain belo
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and svacant ~the length scales are obtained by dividingsvisit
and svacant by the density of adsorption sites and taking t
square root!. In the casef /W@W/a, namely,svisit@svacant,
the typical number of sites that an atom visits is much lar
than the number of vacant sites around it. Therefore, i
most likely to find a second H atom and recombine. In t
opposite limitf /W!W/a, namely,svisit!svacant, most atoms
visit only vacant sites around their initial adsorption site a
desorb before having a chance to form molecules. As a
sult, the recombination efficiencyh is low. Evaluating the
coverage in both limits we obtain@48#

r>5
1

A2
A f

a
,

f

W
@

W

a
,

f

W
,

f

W
!

W

a
.

~12!

The H2 production rater 5ar2 is given by

r >H 1

2
f ,

f

W
@

W

a
,

a

W2 f 2,
f

W
!

W

a
.

~13!

c-

er
it.

FIG. 2. ~a! The coverager given by Eq.~6! as a function of the
angleu, given by Eq.~10! ~see Fig. 1!, without LH rejection~solid
line! and with LH rejection~dashed line!. The results shown are fo
points along the curve given by Eq.~11!. ~b! The recombination
efficiency h @Eq. ~7!# vs u, without LH rejection~solid line! and
with LH rejection ~dashed line!, along the same curve. Note tha
without LH rejectionh depends only onu, namely, it is indepen-
dent of the specific curve.
3-3
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O. BIHAM AND A. LIPSHTAT PHYSICAL REVIEW E 66, 056103 ~2002!
In the first limit, r is linear in the fluxf; thus we denote this
limit as first order kinetics. In the second caser is propor-
tional to f 2 and we thus denote it as second order kinet
The regime of first order kinetics is characterized by h
recombination efficiencyh>1, since the desorption of H
atoms is negligible. In the second order kinetics, desorp
of H atoms ~before they form molecules! is the dominant
process. Therefore, the efficiencyh is low. More precisely,
the recombination efficiency is

h>H 1,
f

W
@

W

a
,

2a

W2 f ,
f

W
!

W

a
.

~14!

For a given surface it is convenient to plot the covera
and recombination rate as a function of the flux and the s
face temperature@33#. The boundary between the first an
second order domains is given by

Tup~ f !5
2E12E0

kB~ ln n2 ln f !
, ~15!

with the first order domain for temperatures below this cu
and the second order domain above it. For parameters on
boundary line the recombination efficiency ish51/2.

Note that in Eq.~1! the coverager is not limited to the
range 0<r<1. In the LH kinetics, the coverage is bound
from above due to the rejection of atoms deposited on to
other H atoms that are already adsorbed. To include this
fect, the flux termf in Eq. ~1! is replaced byf (12r). Solv-
ing the new equation at steady state we obtain

h5
1

8

~W1 f !/a

f /~W1 f !
F211A118

f /~W1 f !

~W1 f !/aG2

, ~16!

which is similar to Eq.~7! except that nowW is replaced by
(W1 f ). The LH rejection introduces further constraints
the domain of high efficiency of H2 formation. This is due to
the fact that at low temperature the coverage approac
unity and newly deposited atoms are rejected. For simpli
we will define the high efficiency domain as the set of poi
in parameter space for whichh>1/2. The boundary of this
domain, namely, the curve in the (W/a, f /W) plane on which
h51/2, is given by

W/a5
f /W

~11 f /W!2 . ~17!

In Fig. 3 we show the high efficiency domain~gray area! and
the low efficiency domain in the parameter space for the
kinetics. Forf /W!1 the boundary between them coincid
with the diagonal line that separates the first and second
der domains without the LH rejection. For any given value
W/a in the range 0,W/a,1/4, the high efficiency domain
is bounded from above and below byf low(W/a)/W, f /W
, f up(W/a)/W, where f up(W/a) and f low(W/a) are deter-
mined by Eq.~17!. The two boundaries are related to ea
other according to
05610
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f up~W/a!

W
5

W

f low~W/a!
. ~18!

For a given surface, for whichE0 , E1, andn are known,
we can draw a diagram for the recombination process in
(T, log10f ) plane~Fig. 4!. For a given flux, the temperature i
the domain of high efficiency~gray area! is now bounded
from above by Eq.~15! and from below by

Tlow~ f !5
E0

kB~ ln n2 ln f !
. ~19!

Therefore, in order for a given surface to exhibit a domain
high efficiency, the conditionTup( f ).Tlow( f ) must be satis-
fied. This condition is satisfied ifE1.E0, namely, the acti-
vation energy for desorption is higher than for diffusion.

A further constraint on the high efficiency domain ma
appear due to the existence of H2 molecules on the surface
These molecules may reject some of the deposited at
through the LH mechanism and thus reduce the effec
flux. The H2 molecules on the surface may be either m

FIG. 3. The phase diagram of hydrogen recombination on m
roscopic surfaces under LH kinetics. The high efficiency domain
bounded to the gray area, on the left side of the curve given by
~17!.

FIG. 4. The phase diagram of the hydrogen recombination p
cess on macroscopic surfaces in the (T, ln f) plane under LH kinet-
ics. The strip of high efficiency is now bounded from both sid
namely, for any given flux there is a range of temperatures
exhibits high recombination efficiency.
3-4
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EXACT RESULTS FOR HYDROGEN RECOMBINATION ON . . . PHYSICAL REVIEW E 66, 056103 ~2002!
ecules that formed on the surface and did not desorb u
formation @33#, or ones that were adsorbed from the g
phase. In both cases the condition for the existence of a
efficiency domain is thatE2,2E12E0, whereE2 is the ac-
tivation energy for desorption of H2 molecules from the sur
face. Thus, surfaces that do not satisfy this condition~par-
ticularly surfaces on which H2 molecules are adsorbed mo
strongly than H atoms! are not expected to efficiently cata
lyze the H2 formation process, unless molecules are desor
upon formation and their density in the gas phase is too
to saturate the adsorption sites on the surface.

For small grains and low flux one may reach the situat
in which the average number of H atoms on a grain is
order unity or even less. Under these conditions the
equation model, which takes into account only average d
sities, ignoring the fact that H atoms are discrete entit
does not account correctly for the recombination rate. Thi
due to the fact that the recombination process require
least two atoms on the surface and the fluctuations in
number of H atoms on different grains become dominan
more complete description of the recombination proces
needed. Such description is provided by the master equa
presented below.

III. H 2 FORMATION ON SMALL DUST GRAINS

A. The master equation model

We will now consider the formation of H2 molecules on
small dust grains. In this case it is more convenient to res
the parameters such that instead of using quantities per
area the total amount per grain will be used. The numbe
H atoms on the grain is denoted byn. Its expectation value is
given by^n&5Sr whereS is the number of adsorption site
on the grain. The incoming flux of H atoms onto the gra
surface is given byF5S f (atoms s21). The desorption rate
W remains unchanged. The hopping ratea (hops s21) is re-
placed byA5a/S, which is approximately the inverse of th
time ts required for an atom to visit nearly all the adsorpti
sites on the grain surface. This is due to the fact that in
dimensions the number of distinct sites visited by a rand
walker is linearly proportional to the number of steps, up
a logarithmic correction@47#. The H2 production rate of a
single grain is given byR5Sr (molecules s21). The rate
equation will now take the form

d^n&
dt

5F2W^n&22A^n&2. ~20!

Under given flux and surface temperature, for grains that
large enough to hold many H atoms, Eq.~20! provides a
good description of the recombination process. However,
small enough grainŝn& becomes of order unity and Eq.~20!
becomes unsuitable, because it neglects the fluctuation
the number of atoms on a grain.

We will now introduce the master equation, which pr
vides a correct description of the recombination process e
in the limit of small grain sizes and low flux. Consider
grain that is exposed to a fluxF of H atoms. At any given
time the number of H atoms adsorbed on the grain may
05610
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n50,1,2, . . . ,S. The probability that there aren hydrogen
atoms on the grain is given byP(n), where

(
n50

S

P~n!51. ~21!

The master equation provides the time derivatives of th
probabilities,Ṗ(n), namely, the gain or loss of the probabil
ties of the different states. These derivatives are linear in
probabilities themselves. The equations include three ter
The first term describes the effect of the incoming fluxF.
The probabilityP(n) increases when a H atoms is adsorbe
on a grain that already hasn21 adsorbed atoms@at a rate of
FP(n21)], anddecreases when a new atom is adsorbed
a grain withn atoms on it@at a rate ofFP(n)]. The adsorp-
tion process is considered as completely random~Poisson
process!, and is fully characterized byF. The second term
includes the effect of desorption. A H atom desorbed from
grain with n adsorbed atoms decreases the probabilityP(n)
@at a rate ofnWP(n), where the factorn is due to the fact
that each of then atoms can desorb#, and increases the prob
ability P(n21) at the same rate. The third term describ
the effect of recombination. The production of one molec
reduces the number of adsorbed atoms fromn to n22. For a
given pair of H atoms, the recombination rate is proportio
to the sweeping rateA multiplied by 2 since both atoms ar
mobile simultaneously. This rate is multiplied by the numb
of possible pairs of atoms, namely,n(n21)/2. The master
equation exhibits the Markov property, namely, no memo
effects are included@42#. This property emerges from th
fact that the incoming flux keeps washing out any spa
correlations that may develop due to recombination eve
between adjacent atoms. The master equation thus take
form

Ṗ~0!52FP~0!1WP~1!12313AP~2!,

Ṗ~1!5F@P~0!2P~1!#1W@2P~2!2P~1!#

13323AP~3!,

Ṗ~2!5F@P~1!2P~2!#1W@3P~3!22P~2!#1A@433

3P~4!22313P~2!#,

A

Ṗ~n!5F@P~n21!2P~n!#1W@~n11!P~n11!2nP~n!#

1A@~n12!~n11!P~n12!2n~n21!P~n!#

A

Ṗ~S!5F@P~S21!2P~S!#2SWP~S!2S~S21!AP~S!.
~22!

Note that the equations forṖ(0) andṖ(1) do not include all
3-5
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the terms, because at least one H atom is required for des
tion to occur and at least two for recombination. Similar
the equation forṖ(S) does not include all the terms sinc
there is no room for more thanSatoms on the grain surface
The expectation value for the number of H atoms on
grain is

^n&5 (
n50

S

nP~n!. ~23!

The rate of formation of H2 molecules,R (molecules s21), is
thus given by

R5A(
n52

S

n~n21!P~n!. ~24!

The hydrogen recombination efficiency on the grains
given by
w

w
t

ea

05610
rp-
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e
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h5
R

~F/2!
. ~25!

B. Exact solution of the master equation

When a grain is maintained at a constant tempera
~namely,W and A are fixed!, and is exposed to a consta
flux F, the recombination process on its surface approach
steady state. Under steady state conditions the time de
tives on the left hand side of Eq.~22! are zero. We thus
obtain a homogeneous set of coupled linear equations in
variablesP(n), n50,1,2, . . . ,S. This set can be expressed
a matrix form as

M PW 50W , ~26!

where
M5S 2F W 2A 0 . . . 0

F 2F2W 2W 3•2A . . . 0

0 F 2F22~W1A! 3W . . . S~S21!A

0 0 F 2F23~W12A! . . . SW

A A A A A

0 0 0 F . . . 2F2S@W1~S21!A#

D ~27!
d

ws
nt
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and PW consists of the componentsP(n), n50,1, . . . ,S. The
matrix elements are denoted byM (n,m), n,m
50,1,2, . . . ,S. The only nonvanishing matrix elements are

M ~n,n! 52@F1nW1n~n21!A#,

M ~n11,n!5F,

M ~n,n11!5~n11!W,

M ~n,n12!5~n12!~n11!A. ~28!

For a finite grain the set of equations~22! is truncated byn
<S. However, under interstellar conditions we expect lo
coverage of H atoms on the grain, namely,^n&!S. There-
fore, one can impose a cutoff at some values,S such that
P(n)50 for n.s and the normalization of probabilities no
takes the form(n50

s P(n)51. The terms in the matrix tha
represent flow of probabilities betweenP(n), n<s, and
P(n), n.s, are removed. Three of these terms disapp
since they are outside the (s11)3(s11) size matrix that
we now consider. The term (2F) in the matrix element
r

M (s,s), which represents the addition of a H atom to a grain
that already includess atoms, is also removed. The modifie
term will be M (s,s)52s@W1(s21)A#.

We proceed by performing linear operations on the ro
of the matrixM. Starting from the top, we add each eleme
M (0,m), m50, . . . ,s, of the first row to the correspondin
elementM (1,m) in the second row. We then proceed dow
ward, adding the elements of thenth row to the correspond
ing elements of the (n11)th row. Each row of the resulting
matrix includes one diagonal term and two off-diagon
terms of the form M 8(n,n)52F, M 8(n,n11)5(n
11)(W1nA), and M 8(n,n12)5(n12)(n11)A ~except
for the last row in which all the elements are zero and
next to the last row in which the second off-diagonal elem
is removed!. In order to remove the second off-diagon
termsM 8(n,n12), n50, . . . ,s22, we now perform a sec
ond set of operations, this time starting at the bottom ro
We first subtract from each elementM 8(s22,m), m
50, . . . ,s, of the (s22)th row the corresponding elemen
M 8(s21,m) of the (s21)th row, multiplied by M 8(s
22,s)/M 8(s21,s). We then proceed in a similar fashion a
the way up. Each line in the resulting matrix has only o
diagonal and one off-diagonal term. The diagonal eleme
take the formM 9(n,n)52F, n50, . . . ,s21 andM 9(s,s)
50. The off-diagonal elements will be
3-6
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M 9~s21,s!5M 8~s21,s!,

M 9~s22,s21!5M 8~s22,s21!2
M 8~s22,s!

M 9~s21,s!

3M 8~s21,s21!,

M 9~s23,s22!5M 8~s23,s22!2
M 8~s23,s21!

M 9~s22,s21!

3M 8~s22,s22!,

A

M 9~s2n,s2n11!5M 8~s2n,s2n11!

2
M 8~s2n,s2n12!

M 9~s2n11,s2n12!

3M 8~s2n11,s2n11!,

A

M 9~0,1!5M 8~0,1!2
M 8~0,2!

M 9~1,2!
M 9~1,1!. ~29!

By combining the operations in Eq.~29! we express the non
vanishing off-diagonal elements of the matrixM 9 as contin-
ued fractions. Their reduced form is

M 9~n,n11!

~n11!AAF
5AA

F
S W

A
1nD

1
1

AA

F
S W

A
1n11D 1

1

•••1
1

AA

F
S W

A
1sD

~30!

for n50, . . . ,s21. The equationM 9PW 50W now takes the
form of a set of recursion equations:

P~n11!5
2M 9~n,n!

M 9~n,n11!
P~n!, n50, . . . ,s21. ~31!

Using these equations we can express all the probabilitie
terms ofP(0) according to

P~n!5~21!nP~0!)
i 50

n21 F M 9~ i ,i !

M 9~ i ,i 11!
G , n51, . . . ,s.

~32!

The probabilityP(0) is then determined by the normaliz
tion condition(n50

s P(n)51. Equation~32!, complemented
05610
in

by the normalization condition, provides an exact solution
the master equation under steady state conditions for
finite cutoff s<S. Since the master equation is of use wh
the coverage is very low, the tail ofP(n) already decays for
somen!S. Therefore, in evaluatingP(0) it is sensible to
ignore the cutoff ats<S and write the infinite sum instead
In this case, the solution of the master equation can be
pressed in terms of Bessel functions. The connection to
Bessel functions can be obtained from the~infinite! contin-
ued fraction expression in Eq.~30!, obtained whens→`.
Using the continued fraction expansion of the ra
Jn(z)/Jn21(z) in Ref. @49# ~Eq. 9.1.73 on p. 363! and the
relation I n(z)/I n21(z)52 iJn( iz)/Jn21( iz) we obtain that

M 9~n,n11!

~n11!AFA
5

I W/A1n21~2AF/A!

I W/A1n~2AF/A!
. ~33!

We thus obtain an expression forP(n) of the form

P~n!5
1

n!
P~0!SAF

AD n I W/A1n21~2AF/A!

I W/A21~2AF/A!
. ~34!

The normalization factorP(0) can be expressed in terms
Bessel functions, using Ref.@49# ~Eq. 9.6.51 on p. 377, with
l5A2), as

P~0!5
2(1/2)(W/A21)I W/A21~2AF/A!

I W/A21~2A2F/A!
. ~35!

Therefore,

P~n!5
2(1/2)(W/A21)

n!
SAF

A
D n

I W/A1n21~2AF/A!

I W/A21~2A2F/A!
,

~36!

in agreement with Ref.@44#, where the solution was obtaine
using a generating function. To examine the effect of
cutoff ats<S, we compared the distributionsP(n) obtained
from Eqs.~32! for different values ofs, as well as the distri-
bution expressed in terms of the Bessel functions for wh
s→`. Under the conditions of low coverage studied here
observe a very fast convergence of Eq.~32! to Eq. ~36! ass
increases. We have also performed direct numerical inte
tion of the master equation and found that the solution giv
by Eq. ~32! is stable and the convergence of the integrat
process is fast.

Using similar summations, we can now find exact expr
sions for the first and second moments of the distribut
P(n). The average number of H atoms on the grain is giv
by

^n&5A F

2A

I W/A~2A2F/A!

I W/A21~2A2F/A!
. ~37!

The rate of formation of H2 molecules is given byR
5A^n(n21)&, where
3-7
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^n~n21!&5
F

2A

I W/A11~2A2F/A!

I W/A21~2A2F/A!
, ~38!

and the recombination efficiency is

h5
I W/A11~2A2F/A!

I W/A21~2A2F/A!
. ~39!

The second moment^n2& can be obtained as the sum of th
right hand sides of Eqs.~37! and~38!. The fluctuations in the
number of H atoms on different grains can be quantified
the standard deviation of the distributionP(n), given by

s5A^n2&2^n&2. ~40!

The limits of first and second order kinetics for larg
grains can now be reproduced from Eq.~39!. The extreme
limit of first order kinetics is characterized by negligible d
sorption, namely,W/A!1, and for large enough grains th
limit also satisfiesF/W@1. In this limit the indices of the
Bessel functions in Eq.~39! W/A61→61, respectively,
and due to the symmetryI 2n(z)5I n(z) of the Bessel func-
tions @49# ~Eq. 9.6.6 on p. 375! h→1, in agreement with the
rate equations. The extreme limit of second order kinetics
large grains is characterized byF/W!W/A. Assuming that
the geometric mean ofF/W andW/A satisfiesAF/A!1 we
obtain

h5
2F

W

1

~W/A11!
. ~41!

In the case of very large grains, namely,W/A@1 we thus
obtain h52AF/W252a f /W2, which is in agreement with
the rate equation results.

Using Eqs.~23! and~22! to express the time derivative o
^n& we obtain

d^n&
dt

5 f 2W^n&22A^n~n21!&. ~42!

This equation resembles the rate equation~20! except for the
recombination term in whicĥ n&2 was replaced bŷ n2&
2^n&. In the limit of small grains, wherên& is small while
the fluctuations represented bys become dominant, the rat
equation becomes unsuitable and overestimates the ra
H2 production.

C. Analysis and results

Consider the recombination process on a small grain w
S adsorption sites under steady state conditions. The bo
ary between the first order and the second order regimes
be expressed in terms ofF5 f S andA5a/S, taking the form
F/W5W/A ~neglecting the LH rejection!. In the first order
regimeF/W@W/A, while in the second order regimeF/W
!W/A. The domains of first and second order kinetics
shown in Fig. 5, separated by the diagonal lineF/W
5W/A.
05610
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The finite size of the grain introduces a third length sc
to the problem. We will now examine how small the gra
should be in order for the recombination efficiency to devi
significantly from the rate equation results. To this end
calculateh as a function of the grain sizeS, using the exact
solution of the master equation, presented above. The
ciencyh vs S in the case of first order kinetics is shown
Fig. 6~a!. The recombination efficiency obtained from th
master equation~solid line! coincides with the rate equatio
result~dashed line! for large grains but declines below som
grain size. In the first order case, such deviations typica
occur only for extremely small grains of a few thousan
adsorption sites. The average number of atoms on the g
vs S is shown in Fig. 6~b!. TheS axis in Fig. 6 corresponds
to the arrow drawn in the first order domain of Fig. 5. Ide
tifying the corresponding symbols, we observe that the s
nificant decline inh starts whenF/W,1, namely, whenS
,W/ f . The fluctuations in the number of H atoms on a gra
can be quantified by the standard deviations of the distri-
bution P(n), given by Eq.~40!. The standard deviations,
divided by ^n&, is shown in Fig. 6~c! as a function of the
grain sizeS. Clearly, as the grain size decreases, the fluct
tions become more pronounced.

Using the notation introduced above, in the domain
first order kinetics the rate equation results start to dev
from the correct value ofh for grain sizes that satisfy

FIG. 5. The phase diagram of the hydrogen recombination p
cess on grains without LH rejection, in terms of the dimensionl
parametersW/A andF/W. The diagonal line separates between t
domains of first order~on the left! and second order recombinatio
~on the right!, respectively. The~unit! square near the origin is th
domain in which the hydrogen recombination efficiency on gra
~obtained from the master equation! deviates significantly from the
rate equation results. In the case of first order processes, the c
tion for such deviation isF/W,1, while in second order processe
the condition isW/A,1. Also included are two axes, in the firs
and the second order domains, that under given physical condit
~fixed values off and T) represent the variation in the grain siz
The behavior ofh, ^n&, ands/^n& along these axes is shown i
Figs. 6 and 7 for the first and second order cases, respectively
3-8
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S,svacant,svisit . ~43!

Under these conditions there is typically no atom or only
single H atom on the grain, which is unlikely to find a seco

FIG. 6. The hydrogen recombination efficiencyh ~a! and the
average number of atoms on the grain^n& ~b! for first order kinetics
as a function of the number of adsorption sitesS on the grain. The
solid line ~with the symbols on it! shows the results obtained from
the master equation, and the dashed line shows the rate equ
results. The symbols correspond to those in Fig. 5, and indicate
the deviations between the master equation and the rate equa
become significant belowF/W51. ~c! The standard deviations of
the distributionP(n) ~normalized bŷ n&). It increases sharply a
the grain size is reduced entering the range in whichF/W,1,
indicating that in this range fluctuations play an important role.
05610
a

atom to recombine with. It thus desorbs before it has
chance to recombine.

The efficiencyh in the case of second order kinetics
shown in Fig. 7~a!. Again, the master equation efficienc

ion
at

ons

FIG. 7. The hydrogen recombination efficiencyh ~a! and the
average number of atoms on the grain^n& ~b! for second order
kinetics as a function of the number of adsorption sitesS on the
grain. The solid line~with the symbols on it! show the results ob-
tained from the master equation, and the dashed line show the
equation results. The symbols correspond to those in Fig. 5,
indicate that the deviation between the master equation and the
equations become significant belowW/A51. ~c! The standard de-
viation s of the distributionP(n) ~normalized bŷ n&). It increases
sharply as the grain size is reduced entering the range in w
W/A,1, indicating that in this range fluctuations play an importa
role.
3-9
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O. BIHAM AND A. LIPSHTAT PHYSICAL REVIEW E 66, 056103 ~2002!
~solid line! coincides with the rate equation result~dashed
line! for large grains but declines below some grain si
typically of a few tens of thousands of adsorption sites. T
average number of atoms on the grain vsS is shown in Fig.
7~b!. The deviations between the rate equations and the m
ter equation results are accompanied by large fluctuation
the number of atoms on a grain, as can be seen in Fig. 7~c!.
The S axis in Fig. 7 corresponds to the arrow drawn in t
second order domain of Fig. 5. Identifying the correspond
symbols, we observe that the significant decline inh starts
when W/A,1, namely,S,a/W. Thus, in the domain of
second order kinetics, deviations between the rate equa
and the master equation occur for a range of grain s
given by

S,svisit,svacant. ~44!

In this case, the grain surface area is smaller than the
that an atom can scan before it desorbs. As a result the a
tends to perform several sweeps of the grain surface visi
again the same vacant sites it has already visited. The p
ability of finding a second atom in these sites is much low
than predicted by the rate equation that does not include s
return visits. The recombination efficiency is thus shar
reduced as the grain size further decreases.

In conclusion, we observe that in both the first and sec
order kinetics the recombination efficiency on a grain~given
by the master equation! starts to deviate from the rate equ
tion result when the grain size~represented byS) becomes
the smallest length scale in the problem. In the first or
case this happens whenS,svacantwhile in the second orde
case it happens whenS,svisit .

The distributionP(n) at three points along theS axis, in
the second order domain, are shown in Fig. 8. For a r
tively large grain,P(n) exhibits a well defined and nearl
symmetric peak. For a very small grain it becomes a mo
tonically decreasing function, dominated byn50, 1, and 2.

IV. DISCUSSION

The analysis above can be related to the modified
equations studied in Refs.@36–38#. The modification is

FIG. 8. The distributionP(n) at three points along the arrow i
the second order domain of Fig. 5, namely, for a small grain w
S52513 ~solid line!, a medium size grain withS556 705~dashed
line!, and a large grain withS5141 372~dotted line!.
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needed when the grain size becomes smaller than the
length scales involved in the recombination process. In
case of first order kinetics this occurs whenS,W/ f ,a/W,
while in second order desorption it occurs whenS,a/W
,W/ f .

Consider the case of first order kinetics. When the gr
becomes smaller thanW/ f the typical number of atoms on
the grain is smaller than 1~even if we consider the depletio
of the H atoms on the surface due to desorption alone
neglect recombination!. Therefore, the rate in which atom
find each other on the surface is no longer determined by
hopping ratea, or the corresponding length scalea/W, but
by the grain sizeS. Therefore, the recombination term in E
~20! should be modified to reflect the changea/W→S, or
equivalentlyA/W→1. This is achieved by replacingA by W.

In the case of second order kinetics, when the grain s
becomes smaller thana/W the atom is typically able to per
form more than a full sweep of the entire grain before
desorbs. However, when an atom visits the same sites fo
second time, the probability of finding another H atom the
is greatly reduced. Therefore, the recombination rate is
termined bySrather than bya/W, requiring the modification
a/W→S, or the replacement ofA by W in Eq. ~20!, exactly
as in the case of first order kinetics. The modified rate eq
tions thus takes the form

d^n&
dt

5F2W^n&22gS A

W
,
W

F D ^n&2, ~45!

where

gS A

W
,
W

F D5H A,
A

W
,1 or

W

F
,1

W,
A

W
.1 and

W

F
.1.

~46!

The modified rate equations take into account correctly
length scales involved in the recombination process on sm
grains. They provide results for^n& that are in significantly
better agreement with the master equation, compared to
unmodified rate equations. They also improve the results
the recombination efficiency. However, the modified ra
equations still involve only the average number of atoms
a grain and do not take into account the discreteness of th
atoms and the fluctuations, quantified by the second mom
in Eq. ~42!. Since the fluctuations dominate the recombin
tion process on small grains, the results of the modified r
equations forh are not expected to coincide with those of t
master equation, but only to approximate them better t
the ordinary rate equations. We observe that the deviat
between the rate equation results and the correct results
tained from the master equation are significant mostly in
second order domain~Fig. 7!. In the domain of first order
kinetics such deviations occur only for extremely sm
grains, which may be physically irrelevant~Fig. 6!.

While the results of the calculations above were presen
using dimensionless parameters, the actual calculation
Figs. 6 and 7 were done for physically relevant paramet

h

3-10
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EXACT RESULTS FOR HYDROGEN RECOMBINATION ON . . . PHYSICAL REVIEW E 66, 056103 ~2002!
In both of them we used the parameters of the amorph
carbon sample, measured experimentally in Refs.@15,33#.
On this sample the activation energies for H diffusion a
desorption were found to beE0544.0 meV and E1
556.7 meV, respectively. The density of adsorption sites
the amorphous carbon surface was found to besdens>5
31013 (sites cm22). The results for first order kinetics~Fig.
6! were obtained forT517 K andf 5531028 ML s21. The
results for second order kinetics~Fig. 7! were obtained for
T518 K and f 53.431029 ML s21. The connection with
the density and temperature of the hydrogen in the gas p
is made throughf 5rgasvgas/4sdenswherergas (atoms cm23)
is the density of H atoms in the gas phase,vgas is the typical
velocity of these atoms, and the factor of 4 in the denomi
tor is the ratio between the surface area and the cross se
for a spherical grain@43#.The number of adsorption sites o
a spherical grain of diameterd is given by

S54pS d

2D 2

sdens, ~47!

and the fluxF5p(d/2)2rgasvgas. Observations indicate tha
the population of carbonaceous and silicate grains in in
stellar clouds exhibits a broad distribution of grain siz
roughly in the range 1026,d,1024 cm @50–53#.

V. SUMMARY

We have studied the process of hydrogen recombina
on small grains in the interstellar medium using the mas
equation approach. An exact solution of the master equa
under steady state conditions was presented. This solu
. J

.

s

J.

-
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provides the probability distributionP(n) of havingn atoms
on the grain as a function of the grain size, flux, temperatu
and the parameters of the surface. From this distribution
can obtain an exact expression for the hydrogen recomb
tion rate on the grain surface. The results were compare
those obtained from the rate equations which describe
recombination process on macroscopic surfaces. In the
of a macroscopically large surface, two length scales
identified. One length scale is related to the average num
of vacant sites around each adsorbed atom, given bysvacant.
The other length scale is given by the average numbe
sitessvisit that an adsorbed atom visits before it desorbs~ne-
glecting recombination!. The relation between these tw
~length! scales determines the properties of the recomb
tion process, dividing the parameter space into two doma
The domainsvisit.svacantis characterized by first order kine
ics with high recombination efficiency, while the doma
svisit,svacantexhibits second order kinetics with low recom
bination efficiency. In both domains the finite size of th
grain enters as a significant factor~requiring the use of the
master equation rather than the rate equations! when it be-
comes the smallest~length! scale in the system. In the do
main of first order kinetics the grain size becomes the sm
est~length! scale whenS,svacantwhile in the second order i
occurs whenS,svisit .
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